Laser Beam Propagation Through Deep Turbulence

Stephen Ammons | 16-ERD-049

Executive Summary

We are exploring the development of a conceptual design for an adaptive-optics system that can compensate for the deep, rapidly flowing turbulence around aircraft-mounted lasers and telescopes that degrades both imaging and beam propagation. This research has applications to laser communications, astronomical imaging, and remote-sensing systems.


Publications and Presentations

Ammons, S. M. 2017. "Joint Strong and Weak Lensing Analysis of the Massive Cluster Field J0850+3604." Astrophys. J. 844. doi: 10.3847/1538-4357/aa7c19. LLNL-JRNL-745721.

Ammons, S. M. 2017. "An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO." Astron. J. 153. doi: m10.3847/153-3881/aa6cae. LLNL-JRNL-745723.

Ammons, S. M., et al. 2018. "LLAMAS: Low-Latency Adaptive Optics at LLNL." Society of Photo-Optical Instrumentation Engineers Astronomical Telescopes and Instrumentation. 10703. 107031N. LLNL-PROC-754397.