Lawrence Livermore National Laboratory
LDRD Annual Report
FY2019
Overview
Research Categories
Advanced Materials and Manufacturing
Materials Informatics for Synthesis, Optimization, and Scale-Up of Advanced Materials
Parallel Two-Photon Polymerization for Sub-Micrometer Additive Manufacturing
Optimizing Engineered Flow-Through Electrodes for Energy Applications
Understanding Material Strength Variabilities and Uncertainties for Component Qualification
Rapid Closed-Loop Control of Additive Manufacturing with Machine Learning
Quantum Levitation of Fuel Capsules for Inertial Confinement Fusion
In Situ Diagnostics for Accelerated Fabrication and Manufacturing of Advanced Materials
Film Growth Dynamics During Pulsed Sputter Deposition
Computational Design Automation
Functional Photoresists for Energy Applications
Porous Metals via Ice Templating
Influence of Process Parameters and Alloy Composition on Crack Mitigation in Selective Laser Melting
Multiscale Model for Chemical Degradation of Materials
Directly Probing Spin Fluctuations in Quantum Spin Liquids with X-Ray Free Electron Lasers
Metallopolymers as an Emergent Class of Materials for Additive Manufacturing of Graded Density Gold Foams
Developing and Characterizing New Tools for Actinide Processing Science
A New Science-Based Paradigm Enabling Microstructure-Tailored Additive Manufacturing of Metals
Climbing over Energy Barriers: A New Paradigm for Accelerating Kinetics
Transforming Living Materials into Chemical Reactors
Gestalt Optics: Three-Dimensional Transparent Ceramics
Acoustic and Electromagnetic Characterization for Accelerated Development of Additive Manufacturing
Advanced Photopolymer Materials Engineering for Multiscale Additive Fabrication
Materials with Embedded Microstructural Logic
Glass Inks for Three-Dimensional Printed Fiber Preforms and Telescope Optics
High-Resolution Three-Dimensional Imaging via X-Ray Reflectometry and Phase-Contrast Computed Tomography
Exascale-Ready Modeling to Predict Recrystallization in High-Temperature Materials
Amorphous Carbon Coatings with Controlled Density and Composition
Laser-Based Defect Reduction in Wide Bandgap Semiconductors Used in Radiation-Voltaics Devices: Radiation Hardening and Annealing
Laser-Based Defect Reduction in Wide Bandgap Semiconductors Used in Radiation-Voltaics Devices: Radiation Hardening and Annealing
Laser Powder Bed Fusion Additive Manufacturing In-Process Monitoring and Optimization Using Thermionic Emission Detection
Large Volume Paste Projection Microstereolithography
Investigation of Computational Corrections to X-Ray Computed Tomography for Dimensional Metrology of Complex Additively Manufactured Parts
Nanoscale Three-Dimensional Printing of Metallic Structures via Femtosecond Projection Two-Photon Reduction
Unconventional Superconductivity in a Focused-Ion-Beam-Decorated Topological Insulator
Development of Additive-Manufacturing Inks with Embedded Electronics for Programmable Matter
Accelerating Feedstock Optimization Using Computer Vision, Machine Learning, and Data Analytic Techniques
Bioscience and Bioengineering
Characterizing Host-Pathogen Immunity Gut-Brain Interactions
Engineering a Therapeutic Microbe for Infection-Site Delivery of Encapsulated Antimicrobial Peptides
Synthetic Biology and Computational Modeling for Prediction of Viral Virulence
Microbial Characterization of Combat-Patient Wounds to Improve Healing
Computational Design of Broadly Neutralizing Vaccines for Highly Mutable Pathogens
Three-Dimensional Bio-Printed Microenvironments for Studying Cancer Metastasis
Investigating the Role of Innate Immunity in Viral Encephalitis Caused by Rift Valley Fever Virus
An Investigational Platform of the Human Brain for Understanding Complex Neural Function
Longitudinal Monitoring of Ribonucleic Acid Content of a Live Cell with a Nanotube Pore Interface
A Computational Approach to Improve Prediction of Off-Target Drug Binding Using Membrane Bilayer Effects
Stable Isotope Probing and Viromics: Quantifying Virus-Host and Carbon Cycling Dynamics in Soil with Isotope-Targeted Metagenomics
Optical Interconnect for High-Density Neural Signals
Detection of Upwind Pathogens Using Aircraft and Ground Stations
A Handheld Medical Diagnostic Device for Harsh Environments
Bioprinting Breast Cancer In Situ to Study Cell Communication in Disease Progression
Brain Connectomics: Opportunities for High-Performance Computing
The Mechanochemical Genesis of Prebiotics
Innate Persistence of Human Immune Memory T Cells
Rapid Detection of Candidates for Vaccines Against Biothreat Agents
Catching Villains: Finding Single Cells Responsible for Cancer Drug Resistance and Metastasis
Protein Factory on a Chip for Rapid Therapeutics
Toward Artificial Neurons: Biomimetic Signal Propagation in Synthetic Nanochannel Systems
A Machine Learning System to Guide Clinical Procedures in Real-Time
A Deep Bayesian Active Learning Framework for Temporal Multimodal Data
Preparing Circulatory Modeling Code for Exascale Computing
Elucidating Algal-Bacterial Community Interactions by Tracking Volatile Biomarkers
Imaging Macromolecular Structural Dynamics with Low-Dose, Time-Resolved Transmission Electron Microscopy
Metamaterials for Mechanically Directing Cell Phenotype
Using Microscale Models to Enhance Predictions of Damage to Soft Tissues
Three-Dimensional Bioprinted Aneurysm for Intervention Modeling Validation
Antibacterial Minerals: A Geochemical Approach to Combating Antibiotic Resistance
Molecular Mechanisms of Bacterial Pathogenesis: Waging the Arms Race with Superbugs
Engineered and Instrumented Three-Dimensional Tumor-Immune Model System
Chemical and Biological Countermeasures
Learning Interactions in Complex Biological Systems
Construction of Genetic Sense-and-Respond Modules to Detect Viral Infection
Vaccination on the Fly: The Use of Mosquitoes to Vaccinate Bat Populations That Harbor Human Pathogens
Creating Feature Representations of Antibody–Antigen Complexes for Fast Binding Prediction with Machine Learning
Predicting Ionizing Radiation Exposure
Cybersecurity and Cyber–Physical Resilience
A Quantitative Methodology for Measuring Cyber Risk to Critical Infrastructure
Predictive Modeling of Correlated Noise in Superconducting Circuits
Industrial Control Systems Network Mapping and Data Analytics for Cybersecurity
Scalable Graph Motif Learning Capabilities for Operational Cyber Defense
Gas-Electrical Grid Coordination for Cross Infrastructure Resilience Enhancement
Directed Energy
Laser Beam Propagation Through Deep Turbulence
Optically Safer, Power-Scalable Laser Systems for Defense Applications
A Diamond Total-Internal-Reflection Photoconductive Switch
New Framework to Prevent Catastrophic Damage to Laser Diodes
Scalable Computational Tools for Predicting Fluid-Structure Interactions in Laser Directed-Energy Applications
Earth and Atmospheric Science
Fiber-Optic Acoustic Sensors for Geophysical Applications
Probabilistic Predictions and Uncertainty Estimation for Radiological and Nuclear Effects Modeling
Integrating climate model simulations and paleo data to constrain future drought risks over California
Measuring Atmospheric Gas Using Small Satellites
Advancing Measurements and Understanding of the Rate and Structure of Atmospheric Warming
Deeply Rooted: Evaluating Plant Rooting Depth as a Means for Enhanced Soil Carbon Sequestration
Interseasonal Prediction of Western United States Snowpack with Deep Learning
Earthquake Predictions on the Sierra High-Performance Computing System
Developing an Observation-Based Transfer Function for Climate Sensitivity
Using Passive Seismology to Map the Water within Critical Glacial Ice Sheets
Dating Alluvial Landforms to Understand the Role of Climate in California's Water Supply
Energy and Resource Security
Fullerene-Grafted Graphene as an Electrical Energy Storage Material
Selective Removal of Ions from Aqueous Solutions
Algebraic Multigrid Preconditioners for Scalable Simulation of Reservoir Geomechanics and Multiphase Flow
Construction of Solar Cells from Colloidal Nanocrystals Through Electrophoretic Deposition
Structure of Ionic Liquids Under Nanoconfinement in Energy Applications
Hot Plasma Etching of Gallium Nitride
Plasmonics-Enhanced Photocatalysis for Water Decontamination
Three-Dimensional Printed Segmented Electrodes for Water Desalination
Enabling Optimized Charging of Electric Vehicles in Mobility Services
Rational Design of Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries
Evolution of Induced Fracture Networks Using Machine Learning Correlation Image Analysis
Three-Dimensional Printing of Catalytic Electrodes for Solar-Driven Water-Splitting Devices
New Experiment–“Theory Capability for Atomic-Level Imaging of Interfaces in Solid-State Batteries
Manufacturing Molecules for the Carbon Economy
High-Energy-Density Science
Exploring Laser-Produced Relativistic Pair Plasma Jets
Kinetics of Incipient Stages of Phase Transitions
Understanding Plasma Divertor Detachment in Fusion Power Reactors
Effects of Pressure-Induced Ionization Potential Depression on Material Properties
Effects of Magnetic Fields on Transport in Laser-Driven Nonequilibrium Plasmas
The Design of a Solid-State Streak Detector
Investigation of Ultrahigh-Pressure Phase Transitions in Metals with a Toroidal Diamond Anvil Cell
A Short-Pulse, Laser-Driven Particle Beam Capability
Electrodeposition of Gradient-Density Metal Films from Ionic Liquids
Microphysics Studies of Hohlraum Dynamics
Foams in Hohlraums
Next-Generation Hohlraums for High Coupling Efficiency
Accurate Temperature Determination from X-Ray Diffraction and X-Ray Absorption Measurements
Simulating Magnetized Particle Dynamics in Z-Pinch Plasmas
Probing Liquid Phases and f-Electron Systems at the Dynamic Compression Sector
X-Ray Optics Solutions for Studying Mesoscale Science
Direct Measurement of Mass-Temperature Distributions in the Core of Implosions on the National Ignition Facility
Quantum Non-Equilibrium Dynamics of Electronic Transport in Nonlinear Regimes
Pressure Ionization in Ultra-High Density Plasmas
High-Fidelity Kinetic Modeling of Plasmas in Z-Pinch and Pulsed-Power Configurations
Exploring Deuterium-Tritium Gas-Filled Hohlraums as a High-Yield Neutron Source
Metal Ejecta: Transport, Interaction, and Recollection
Defining the Direction of Nuclear-Plasma Interaction Research at the National Ignition Facility
Imaging Dynamics of Defects Far from Equilibrium
Plasma Amplifiers to Enable Dramatic Increases in Laser Power and Energy to Access New Physical Processes
Unraveling the Physics and Chemistry of Water-Rich Mixtures at Extreme Pressures and Temperatures
Laser-Plasma Interactions in Magnetized Environments
Modeling Hydrodynamic Instabilities and Mix in Hohlraums
Development of Multilayer Laue Lenses for 25 Kilo-Electronvolt X-Ray Imaging
New Design for Low-Mode Asymmetry Mitigation in Inertial Confinement Fusion Implosions
Heavy-Metal Ceramic Hohlraums for Magnetically Assisted Ignition Targets
Development of Beryllium Carbide Capsules for Inertial Confinement Fusion Implosions
Quantum Leap for Fusion Energy Sciences
Establishing a Laser-Driven Megaelectronvolt X-Ray and Neutron Radiographic Capability
High-Explosives Physics, Chemistry, and Material Science
Characterizing Carbon Nucleation in Shocked Energetic Materials
Unlocking the Mysteries of High-Explosive Science
Three-Dimensional Microwave Imaging of Detonation Fronts
Metal-Phthalocyanine Superlattices: Exploring Quantum Devices as a New Paradigm for Sensing Applications and Information Storage
High-Performance Computing, Simulation, and Data Science
Control of Superconducting Quantum Circuits
High-Dimensional Spectral-Sampling Techniques
Detecting Data Races in High-Performance Computing
Simulation of Biased Random Walks in an Asynchronous Graph Framework
Projection-Based Model Reduction with Applications in Radiation Transport and Hydrodynamics Simulation
Multiple-Rate Integrators for Differential Equations
Modeling Thermal and Quantum Magnetic Fluctuations in Correlated Materials
Simulations of Interpenetrating Plasmas
Robust Decentralized Signal Processing and Distributed Control of Autonomous Sensor Networks
Large-Scale Multimodal Deep Learning for Nuclear Nonproliferation Analysis
Variable Precision Computing
High-Order Finite Elements for Thermal Radiative Transfer on Curved Meshes
XPlacer: Extensible and Portable Optimizations of Data Placement in Memory
Deep Multitask Learning for Predictive Oncology
Methods for Explainable Artificial Intelligence
The Development of High-Order Interface Tracking Schemes for the Simulation of Multiphase Flows
Engineering a Quantum Methuselah Using Phononic Band Gaps
Hypothesis Testing via Artificial Intelligence: Generating Physically Interpretable Models of Scientific Data with Machine Learning
Nuclear Dynamics on a Quantum Chip
Beating Monte Carlo: The Polynomial Method in Lattice Problems
Heterogeneous Computing Elements: A Quantitative Evaluation
Next Generation Machine Learning
Expanding Control of Quantum Processor Units
Scalable Multilevel Training of Large Neural Networks
Advanced Physics Models for Particle-Particle Interactions
High-Performance Parallel Simulations for Whole-Cell Modeling
Automatic Design of Transport Systems Through Topology Optimization on Adaptively Refined Computational Grids
Advanced Parameterizations for Topology Optimization via Projection
Prototyping Exascale Graph Analytics
Quantum Optimal Control Using High-Performance Computing
Evaluating Field-Programmable Gate Arrays with Proxy Applications
Machine Learning for Constitutive Modeling on an Exascale Computing Platform
MADSTARE: Modeling and Analysis for Data-Starved or Ambiguous Environments
Lasers and Optical Science and Technology
HDRScope—”The High Dynamic-Range Oscilloscope
Enhanced Surface Laser-Damage Resistance of Nonlinear Crystals
Science of Finishing of Novel Optical Materials
Technologies for High-Energy, Short-Pulse Laser Systems Beyond the Kilowatt Barrier
Minimizing Absorption on Optical Surfaces of Gas Lasers
Advanced Multilayer Systems for National Security
Anti-Reflective Meta-Surfaces (ARMS) for High-Power Lasers
Arbitrary Control and Characterization of Laser Waveforms and Interactions at Picosecond Resolution over Long Record Lengths
Energy Scaling of Thin-Disk Lasers
Plasma Photonics: Manipulating Light Using Plasmas
Short-Pulse Laser Ablation of Energetic Materials for Threat Object Interrogation
Germanium Photodiode Arrays for Hard X-Ray Imaging
The Physics of Confined Laser Ablation and Its Applications
Photonic Transceivers for Secure Radio Frequency Communications and Radar
Improving the Performance and Efficiency of Diode-Pumped, High-Power Lasers
Using Nanoparticle Sol Gels to Prepare Custom, High-Purity Optical-Fiber Preforms
Optical Sampler for Broad-Spectrum Sensing
Assessment of Laser-Damage Performance of Meta-Surface Material to Enable High-Speed Laser Beam Control
Time-Resolved Two-Dimensional Streak Camera
Nuclear, Chemical, and Isotopic Science & Technology
Nucleosynthesis for Science and Security
Uncovering the Origins of the Solar System with Cosmochemical Forensics
The Origins of Matter on Near-Exascale Supercomputing
An Alternative Rare-Event Detector
Probabilistic Modeling for Nuclear Fission and Heavy-Ion Collisions
Developing Photonuclear Experimental Capabilities for Nuclear Science and Security
The Next Breakthroughs in Neutrino Physics
Laying the Foundation for a Predictive Theory of Electroweak Nuclear Phenomena
Toward the World's First Nuclear Clock
Building a Predictive Fission-Rate Model
Micro-Resonators for Compact Optical Sensors
Development of Novel Ligand-Based Systems to Study the Chemical Properties of the Transactinides
Beta Decay at the Limits of Nuclear Stability: Integrating Ab Initio Calculations and Kinematically Complete Measurements
Nuclear Reaction Theory for Astrophysics and Laboratory Applications
Investigating the Site of the Weak Rapid Neutron Capture Process
Developing a Radiochemical Method to Measure Thermonuclear Detector Cross Sections
A Simple Search for Sterile Neutrino Dark Matter
Establishing Hands-On Astrophysics at Lawrence Livermore National Laboratory
Connecting Nuclear Structure to Stellar Astrophysics: Neutron Skin in Tin Isotopes
Using Moderately Volatile Elements to Understand the Origin of the Earth-Moon System
Proliferation of Interstellar Plutonium into the Solar System
Discovering the Nature of Neutrinos: How Nuclear Theory Will Advance This Grand Endeavor
Using Isotope Probing of Microbe-Microbe Interactions to Determine the Fate of Carbon and Impacts on Climate Change
Constraining the Origin of Earth's Water with Isotope Tracers in Astromaterials
Nuclear Threat Reduction
Pioneering Stable Isotope Signatures of Nuclear Proliferation
Modeling Nuclear Cloud Rise and Fallout in Complex Environments
Additive Manufacturing of Post-Detonation Surrogate Debris Reference Materials
Experimental Determination of the Uranium-239 Neutron Capture Reaction by Measurement of Uranium-240 by Accelerator Mass Spectrometry
Probing Photon Fusion for New Physics at the Large Hadron Collider Using Proton Tagging
Deployable, Automated Chemistry-on-a-Chip Platform for Nuclear Forensics
Rapid Laser Processing of Nuclear Debris
Efficient, Portable Radioxenon Collection for Nuclear Test Monitoring
Short-Pulse Interrogation for Detection of Special Nuclear Materials
Nuclear Weapons Science
Quantifying Uncertainties of Microscopic Nuclear Theories
Flash X-Ray Computed Tomography for Three-Dimensional Characterization of Explosive Performance
Development of a Low-Cost High-Throughput Ejecta Drive
Learning-Based Predictive Models: A New Approach to Integrating Large-Scale Simulations and Experiments
Examining an On-the-Fly Movable Boundary Capability for Simulations of Unsteady High-Speed Aerothermodynamic Flows
Space Security
Positioning, Navigation, and Timing with High-Accuracy Astrometry
Next-Generation Search for Solar Axion Dark Matter with the International Axion Observatory
Design and Optimization of Compact Multi-Mission Telescopes
A Search for Intermediate-Mass Black Hole Dark Matter
Integration of Quantification of Margins and Uncertainties Methodology into Parallel Discrete Event Simulator Framework
Tunable Optoelectronic Materials for Next-Generation Infrared Detectors
Photonic-Software-Defined Radio
Instrumenting a Fleet of Small Satellites for Monitoring the Earth's Upper Atmosphere
Archives
FY2018
Overview
Director's Statement
How to Read This Report
The Laboratory Directed Research and Development Program at LLNL
Oversight
Alignment with DOE, NNSA, and Laboratory Missions
Topics of Inquiry
Types of Projects
Structure of the FY18 Portfolio
Metrics
Research Highlights
Awards and Recognition
LDRD on Journal Covers (and TV)
The Long-Term Impacts of LDRD Investments: Centers for Strategic Partnerships
Advanced Materials and Manufacturing
Exploratory Research
A Design Platform for Electrochemical Conversion of Carbon Dioxide
A Diamond Total-Internal-Reflection Photoconductive Switch
Building Computerized Tomography Tools for Precision Additive Manufacturing
Electrodeposition of Gradient-Density Metal Films from Ionic Liquids
Film Growth Dynamics During Pulsed Sputter Deposition
Functional Photoresists for Energy Applications
Influence of Process Parameters and Alloy Composition on Crack Mitigation in Selective Laser Melting
In Situ Diagnostics for Accelerated Fabrication and Manufacturing of Advanced Materials
Materials Informatics for Synthesis, Optimization, and Scale-Up of Advanced Materials
Mesoscale Crystal Architectures
Optimizing Engineered Flow-Through Electrodes for Energy Applications
Parallel Two-Photon Polymerization for Sub-Micrometer Additive Manufacturing
Porous Metals via Ice Templating
Quantum Levitation of Fuel Capsules for Inertial-Confinement Fusion
Rapid Closed-Loop Control of Additive Manufacturing with Machine Learning
Three-Dimensional Bio-Printed Microenvironments for Studying Cancer Metastasis
Understanding Material Strength Variabilities and Uncertainties for Component Qualification
Feasibility Studies
An Adaptable Network-Based Method for Bonding Plastics
Bridging the Material Modeling Gap Between Research and Design
Carbons with Designed Chemistry and Porosity
Material Logic
Multiscale Model for Chemical Degradation of Materials
Solid Nanoadhesives for Precision Assembly
Wire-Arc Additive Manufacturing for Reactive Metals
Lab-Wide Competitions
Metallopolymers as an Emergent Class of Materials for Additive Manufacturing of Graded Density Gold Foams
Construction of Solar Cells from Colloidal Nanocrystals through Electrophoretic Deposition
Directly Probing Spin Fluctuations in Quantum Spin Liquids with X-Ray Free Electron Lasers
Unraveling Force Chains and Failure in Granular Materials
Nanometer-Particle Colloid Capsule Composites
Strategic Initiative
A New Science-based Paradigm Enabling Microstructure-Tailored Additive Manufacturing of Metals
Developing and Characterizing New Tools for Actinide Processing Science
Enhanced Coherence for Quantum Sensing and Simulation
Bioscience and Bioengineering
Exploratory Research
A Computational Approach to Improve Prediction of Off-Target Drug Binding Using Membrane Bilayer Effects
A Handheld Medical Diagnostic Device for Harsh Environments
An Experimental Platform and Model for Tumor Growth and Response to Therapeutics
Bioprinting Breast Cancer In Situ to Study Cell Communication in Disease Progression
Characterizing Host–“Pathogen Immunity Gut–“Brain Interactions
Computational Design of Broadly Neutralizing Vaccines for Highly Mutable Pathogens
Construction of Genetic Sense-and-Respond Modules to Detect Viral Infection
Detection of Upwind Pathogens Using Aircraft and Ground Stations
Engineering a Therapeutic Microbe for Infection-Site Delivery of Encapsulated Antimicrobial Peptides
Longitudinal Monitoring of Ribonucleic Acid Content of a Live Cell with a Nanotube Pore Interface
Microbial Characterization of Combat-Patient Wounds to Improve Healing
Multimodal Learning on Big Brain Data
Optical Interconnect for High-Density Neural Signals
Stable Isotope Probing and Viromics: Quantifying Virus-Host and Carbon Cycling Dynamics in Soil with Isotope-Targeted Metagenomics
Synthetic Biology and Computational Modeling for Prediction of Viral Virulence
The Engineered Micro-Sensor Array
Feasibility Studies
Brain Connectomics: Opportunities for High-Performance Computing
Exploring Growth Rate and Pathogenicity in Pathogens
Exploring the Use of Cell Wall Binding Domains to Purify Gram-Negative Bacteria from Bodily Fluids
New Approaches for Manufacturing and Evaluating Novel Bio-Inspired Materials
Lab-Wide Competitions
A Machine Learning System to Guide Clinical Procedures in Real-Time
Catching Villains: Finding Single Cells Responsible for Cancer Drug Resistance and Metastasis
Innate Persistence of Human Immune Memory T Cells
Investigating the Role of Innate Immunity in Viral Encephalitis Caused by Rift Valley Fever Virus
Nanometer-Scale, Particle-Based Immunotherapy for Cancer Treatment
Protein Factory on a Chip for Rapid Therapeutics
Rapid Detection of Candidates for Vaccines Against Biothreat Agents
Real-Time Exhaled Breath Analysis for Biosecurity and Biomedicine
The Mechanochemical Genesis of Prebiotics
Toward Artificial Neurons: Biomimetic Signal Propagation in Synthetic Nanochannel Systems
Strategic Initiative
An Investigational Platform of the Human Brain for Understanding Complex Neural Function
Chemical and Biological Countermeasures
Exploratory Research
Learning Interactions in Complex Biological Systems
Cybersecurity and Cyber–Physical Resilience
Exploratory Research
A Quantitative Methodology for Measuring Cyber Risk to Critical Infrastructure
Control of Superconducting Quantum Circuits
Predictive Modeling of Correlated Poise in Superconducting Circuits
Directed Energy
Exploratory Research
A Compact High-Power, Radio-Frequency Directed-Energy Source
Advanced Laser Diode Packaging
Exploring Laser Directed-Energy Lethality and Vulnerability
New Framework to Prevent Catastrophic Damage to Laser Diodes
Optically Safer, Power-Scalable Laser Systems for Defense Applications
Earth and Atmospheric Science
Exploratory Research
Advancing Measurements and Understanding of the Rate and Structure of Atmospheric Warming
Detection and Attribution of Climate-Driven Impacts on Crop Fields
Integrating Climate Simulations and Paleontology Data to Constrain California Drought Risks
Measuring Atmospheric Gas Using Small Satellites
Probabilistic Predictions and Uncertainty Estimation for Radiological and Nuclear Effects Modeling
Uncovering the Origins of the Solar System with Cosmochemical Forensics
Lab-Wide Competitions
Improving Subsurface Fluid Characterization by Coupling Seismic and Electromagnetic Phenomena
Energy and Resource Security
Exploratory Research
Accelerated Discovery of Advanced Combustion Fuels
Electron Energy Loss Spectroscopy of Liquids at Liquid-Solid Interfaces
Fiber-Optic Acoustic Sensors for Geophysical Applications
Fullerene-Grafted Graphene as an Electrical Energy Storage Material
High-Fidelity Fracture Model for Hydraulically Fractured Shale Reservoirs
Feasibility Studies
Determining the Rate of Patural Carbonate Precipitation Using Bomb-Pulse Radiocarbon Dating
Developing a Carbon Model for the U.S. Economy
Enhanced Removal of Inorganic Carbon from Seawater: A Carbon Mitigation Feasibility Study
Printed Biocatalysts for Patural Gas Upgrading
Lab-Wide Competitions
Hierarchical Nanometer-Scale Porous Copper Flow-Through Electrodes for Efficient Carbon Dioxide Reduction
Structure of Ionic Liquids Under Panoconfinement in Energy Applications
Forensic Science
Exploratory Research
Pioneering Stable Isotope Signatures of Nuclear Proliferation
Feasibility Studies
Long-Term Biomarkers of Chemical Agent Exposure
Strategic Initiative
Published Protein Based Human Identification
High-Energy-Density Science
Exploratory Research
A High-Fluence, High-Energy X-Ray Source Using Laser–“Plasma Instabilities
A Short-Pulse, Laser-Driven Particle Beam Capability
Accurate Temperature Determination from X-Ray Diffraction and Extended X-Ray Absorption Fine Structure Measurements
An Optical Interferometry Diagnostic for Hohlraum Plasma Characterization Experiments on the National Ignition Facility
Defining the Direction of Nuclear-Plasma Interaction Research at the National Ignition Facility
Effects of Magnetic Fields on Transport in Laser-Driven Ponequilibrium Plasmas
Effects of Pressure-Induced Ionization Potential Depression on Material Properties
Exploring Deuterium-Tritium Gas-Filled Hohlraums as a High-Field Neutron Source
Exploring Laser-Produced Relativistic Pair Plasma Jets
Extending Laser-Driven X-Ray Sources to High-Energy-Density Science Facilities
Foams in Hohlraums
High-Fidelity Kinetic Modeling of Plasmas in Z-Pinch and Pulsed-Power Configurations
High-Pressure Thermal Conductivity of Iron
Hybrid Drive on the National Ignition Facility
Imaging Dynamics of Defects Far from Equilibrium
Improving Density Functional Theory for Warm Dense Matter
In Situ Probes of Granular Media Under Compression
Investigation of Ultrahigh-Pressure Phase Transitions in Metals with a Toroidal Diamond Anvil Cell
Kinetics of Incipient Stages of Phase Transitions
Measuring Astrophysically Relevant Reaction Rates in a High-Energy-Density Laboratory
Measuring the Asymptotic Behavior of Self-Generated B Magnetic Fields in a Hohlraum Geometry
Metal Ejecta: Transport, Interaction, and Recollection
Metallic Helium at Extreme Density Inside Giant Planets and White Dwarf Stars
Microphysics Studies of Hohlraum Dynamics
New Quantum Simulation Capability for Ultrahigh-Temperature, High-Energy-Density Science
Next-Generation Hohlraums for High Coupling Efficiency
Numerical Simulations of Dust-Grain Collisions with Interstellar Spacecraft
Pressure Ionization in Ultra-High-Density Plasmas
Probing Liquid Phases and f-Electron Systems at the Dynamic Compression Sector
Probing the Interface Stability of Implosions
Quantum Non-Equilibrium Dynamics of Electronic Transport in Nonlinear Regimes
Simulating Magnetized Particle Dynamics in Z-Pinch Plasmas
Simulations of Interpenetrating Plasmas
Study of Iron K-Alpha Spectra in a Compact X-Ray Atmosphere
Study of Kinetic Plasma Dynamics and Field Degradation in Inertial Confinement Fusion
The Design of a Solid-State Streak Detector
Understanding Plasma Divertor Detachment in Fusion Power Reactors
X-Ray Optics Solutions for Studying Mesoscale Science
Feasibility Studies
Exploring the Feasibility of Using Corona Fusion Targets for Studying Plasma Interpenetration and Electron-Ion Equilibration
Laser-Driven Megavolt X-Ray and Neutron Source Optimization
One-Step Drop Generation of Low-Density Foam Shells
Thermal Conductivity Measurements in Convergent Geometry
High-Explosives Physics, Chemistry, and Material Science
Exploratory Research
Characterizing Carbon Pucleation in Shocked Energetic Materials
Controlling Detonative Phenomena with High-Explosives Material Architecture
Strategic Initiative
Unlocking the Mysteries of High-Explosive Science
High-Performance Computing, Simulation, and Data Science
Exploratory Research
Advanced Adaptive Optics Algorithms for Astronomical and X-Ray Applications
Algebraic Multigrid Preconditioners for Scalable Simulation of Reservoir Geomechanics and Multiphase Flow
Computational Framework for Data Assimilation and Uncertainty Management of Large-Dimensional Dynamics Models
Deep Multitask Learning for Predictive Oncology
Dependency Resolution for High-Performance Computing Software
Detecting Data Races in High-Performance Computing
Failure Recovery Abstractions for Large-Scale Parallel Applications
High-Dimensional Spectral-Sampling Techniques
Improving Simulation Workflows: A Data Analytics Approach
In-Memory Associative Indexing: An Approach to Efficient High-Performance Computing
Integration of Quantification of Margins and Uncertainties Methodology into Parallel Discrete Event Simulator Framework
Methods for Explainable Artificial Intelligence
Modeling Spatial and Temporal Coupling in High-Contrast Laser Grating Compressors
Modeling Thermal and Quantum Magnetic Fluctuations in Correlated Materials
Multiple-Rate Integrators for Differential Equations
Projection-Based Model Reduction with Applications in Transport and Hydrodynamics Simulation
Real-Time Decision Making in Swarm Situations Using Belief Networks
Robust Decentralized Signal Processing and Distributed Control of Autonomous Sensor Networks
Selective Removal of Ions from Aqueous Solutions
Simulation of Biased Random Walks in an Asynchronous Graph Framework
The Development of High-Order Interface Tracking Schemes for the Simulation of Multiphase Flows
Topology Optimization of Multifunctional Materials
XPlacer: Extensible and Portable Optimizations of Data Placement in Memory
Feasibility Studies
Compressed Numerics to Reduce Data Movement in Numerical Simulations
Engineering a Quantum Methuselah Using Phononic Band Gaps
Optimizing Application Performance in Multi-Constraint Computing Environments
Povel Methods for Predicting Properties of Complex Reactive Solid Interfaces
Lab-Wide Competitions
Discovering Phase Behavior of Materials Interfaces with Evolutionary Algorithms
Strategic Initiative
Computational Design Automation
Large-Scale Multimodal Deep Learning for Nuclear Nonproliferation Analysis
Learning-Based Predictive Models: A Pew Approach to Integrating Large-Scale Simulations and Experiments
Variable Precision Computing
Lasers and Optical Science and Technology
Exploratory Research
Active Adaptive Control of High-Energy, High-Repetition-Rate, Short-Pulse Lasers
Anti-Reflective Meta-Surfaces for High-Power Lasers
Arbitrary Control and Characterization of Laser Waveforms and Interactions at Picosecond Resolution over Long Record Lengths
ARCHER: Advanced Radiographic Capability–High Energy and Resolution
Energy Scaling of Thin-Disk Lasers
Enhanced Surface Laser-Damage Resistance of Nonlinear Crystals
HDRScope--The High Dynamic-Range Oscilloscope
Laser Beam Propagation Through Deep Turbulence
Mechanisms of Pulsed-Laser Ablation, Damage, and Failure in Various Classes of Materials
Minimizing Absorption on Optical Surfaces of Gas Lasers
Planar Ceramic Light Guides for Solar Concentrators and Laser Amplifiers
Plasma Photonics: Manipulating Light Using Plasmas
Science of Finishing of Novel Optical Materials
Technologies for High-Energy, Short-Pulse Laser Systems Beyond the Kilowatt Barrier
Feasibility Studies
Agile, Compact Monolithic Beam Director
Plasmonic Control of Short Pulses in Optical Fibers
Lab-Wide Competitions
Extreme Nonlinear Optics of Plasmas
Strategic Initiative
Advanced Multilayer Systems for National Security
Fabrication of Functionally Graded Optical Components Using Additive Manufacturing
Nuclear, Chemical, and Isotopic Science & Technology
Strategic Initiative
The New Frontier of Nuclear Science: Nuclear Reactions and Radiochemistry at the National Ignition Facility
Exploratory Research
An Alternative Rare-Event Detector
Developing Photonuclear Experimental Capabilities for Nuclear Science and Security
Laying the Foundation for a Predictive Theory of Electroweak Nuclear Phenomena
Nucleosynthesis for Science and Security
Probabilistic Modeling for Nuclear Fission and Heavy-Ion Collisions
The Next Breakthroughs in Neutrino Physics
The Origins of Matter on Near-Exascale Supercomputing
Feasibility Studies
Additive Manufacturing of Post-Detonation Surrogate Debris Reference Materials
Beyond Binary Reactions: A Generalized Microscopic R-Matrix Theory with Two- and Three-Particle Asymptotic Configurations
Feasibility of Low-Energy Nuclear Physics Research Using Livermore Capabilities and Beams at Other Facilities
Micro-Optical Gas Sensors
Lab-Wide Competitions
Building a Predictive Fission-Rate Model
Development of Integrated Systems for Discovering the Chemical Properties of the Heaviest Elements
Event-by-Event Determination of Antineutrino Direction
Modernizing the Fission Basis
Probing Photon Fusion for New Physics at the Large Hadron Collider Using Proton Tagging
Towards the World's First Nuclear Clock
Nuclear Threat Reduction
Exploratory Research
Modeling Nuclear Cloud Rise and Fallout in Complex Environments
Feasibility Studies
Experimental Determination of the Uranium-239 Neutron Capture Reaction by Measurement of Uranium-240 by Accelerator Mass Spectrometry
Short-Pulse Laser Ablation of Energetic Materials for Threat Object Interrogation
Vapor-Phase Spectroscopy of High-Explosives Chemistry with Tritium and Depleted Uranium
Nuclear Weapons Science
Exploratory Research
Deformation Mechanisms in Body-Centered Cubic Metals at High Pressures and Strain Rates
Direct Measurement of Mass-Temperature Distributions in the Core of Implosions on the National Ignition Facility
Emerging Radiography and Potential Diagnostic Applications
Flash X-Ray Computed Tomography for 3D Characterization of Explosive Performance
High-Order Finite Elements for Thermal Radiative Transfer on Curved Meshes
Inferring Nuclear Fireball Properties from Experimental Data
Quantifying Uncertainties of Microscopic Nuclear Theories
Feasibility Studies
Development of a Low-Cost High-Throughput Ejecta Drive
Exploratory Design Study Towards the First Plasma-Electron Screening Experiment
Feasibility of Predicting the Characteristics of the Ultraviolet, Visible, and Infrared Emissions from a Nuclear Explosion
Flexible Nondestructive Inspection for Multilayer Metallic Structures
Space Security
Exploratory Research
A Search for Intermediate-Mass Black Hole Dark Matter
Decoding the X-Ray Cipher of the Universe in the Laboratory
Design and Optimization of Compact Multi-Mission Telescopes
Image Analysis for Dark Energy and Space Surveillance Applications
Next-Generation Search for Solar Axion Dark Matter with the International Axion Observatory
Positioning, Navigation, and Timing with High-Accuracy Astrometry
Feasibility Studies
Machine-Based Quantification of Satellite Image Quality
FY2017
Overview
Director's Statement
How to Read This Report
The Laboratory Directed Research and Development Program at LLNL
Oversight
Alignment with DOE, NNSA, and Laboratory Missions
Topics of Inquiry
Types of Projects
Structure of the FY18 Portfolio
Metrics
Research Highlights
Awards and Recognition
LDRD on Journal Covers (and TV)
The Long-Term Impacts of LDRD Investments: Centers for Strategic Partnerships
Advanced Materials and Manufacturing
Advanced Synthesis and Characterization Techniques for Ultrahard Film Growth
Microstructure Evolution During Rapid Solidification: In Situ Characterization and Mesoscale Modeling
Accelerated Development of Multiscale Materials
Rational Design and Optimization of Additively Manufactured Carbon-Fiber-Reinforced Composites
Manipulating Optical and Electromagnetic Properties Through Hierarchical Metamaterials
X-Ray Pump-and-Probe Experiments with a Free-Electron Laser
Freeze-Drying Aerosols: A Facile Route to Metal Particles with Nanometer-Scale Pores
Building Computerized Tomography Tools for Precision Additive Manufacturing
Materials Informatics for Synthesis, Optimization, and Scale-Up of Advanced Materials
Mesocrystal Architectures
Simulating X-Ray Free-Electron Laser Experiments for High-Energy-Density Science
Parallel Two-Photon Polymerization for Sub-Micrometer Additive Manufacturing
Radiation Processes in Nanometer-Scale Foams
Coating Hollow Objects with Uniform Low-Density Films
Electron-Beam-Induced Deposition of Boron Films
Directed Assembly of Block Copolymers for Optical Metamaterials at Visible Wavelengths
Enhanced Coherence for Quantum Sensing and Simulation
Understanding Material Strength Variabilities and Uncertainties for Component Qualification
Quantum Levitation of Fuel Capsules for Inertial-Confinement Fusion
In Situ Diagnostics for Accelerated Fabrication and Manufacturing of Advanced Materials
Electrodeposition of Gradient-Density Metal Films from Ionic Liquids
Film Growth Dynamics During Pulsed Sputter Deposition
A Diamond Total-Internal-Reflection Photoconductive Switch
Discrete Polycrsytal Plasticity Simulator Mid Career Award
Effects of Surface Defects on the Catalytic Activity of Semiconductors for Charge-Transfer Reactions in Liquids
Three-Dimensional Fabrication by Tomographic Holographic Lithography
Direct Ink Writing of Bulk Metallic Glasses
Material Logic
Additive Manufacturing of Nanometer-Scale Porous Metals
Nanometer-Particle Colloid Capsule Composites
Bioscience and Bioengineering
Analysis of a Metabolically Engineered Microbial Consortium for Optimal Production of Biofuels
Unraveling the Burkholderia Pathogen Infection
Engineering Bacterial Cell-Like Compartments as Platforms for Synthetic Biology
Characterizing Host-Pathogen Immunity Gut-Brain Interactions
Modeling Tissue Membranes
Simultaneous Peripheral Nerve Stimulation and Gastrointestinal System Monitoring
A "Peacock" Platform for Recording Cardiac Tissue Force
Enhancing Nitrogen Uptake in Sustainable Biofuels with Microbes
Engineering a Therapeutic Microbe for Infection-Site Delivery of Encapsulated Antimicrobial Peptides
Microbial Characterization of Combat-Patient Wounds to Improve Healing
Three-Dimensional Bio-Printed Microenvironments for Studying Cancer Metastasis
Using Population Genomics to Improve Genome Editing
Engineered and Instrumented 3D Tumor-Immune Model System
Investigating the Role of Innate Immunity in Viral Encephalitis Caused by Rift Valley Fever Virus
Nanometer-Scale, Particle-Based Immunotherapy for Cancer Treatment
An Investigational Platform of the Human Brain for Understanding Complex Neural Function
Chemical and Biological Security
Development of a Virtual Human Heart to Predict the Pharmacology of Novel Drugs
The Engineered Micro-Sensor Array
Modeling Mutagenic Chain Reactions in Natural Ecosystems
Approaches for Calibrating Agent-Based Models to Data
Biosensors for Sensitive and Cost-Effective Detection of Uranium Contamination
Synthetic Biology and Computational Modeling for Prediction of Viral Virulence
Learning Interactions in Complex Biological Systems
Computational Design of Broadly Neutralizing Vaccines for Highly Mutable Pathogens
Real-Time Exhaled Breath Analysis for Biosecurity and Biomedicine
Cyber Security, Space, and Intelligence
All-Source Data Fusion for Detecting and Monitoring Threats on a Global Scale
Integrated Physics-Based Noise Modeling of Qubit Devices
Image Analysis for Dark Energy and Space Surveillance Applications
Decoding the X-Ray Cipher of the Universe in the Laboratory
Forensic Science of Genetically Variant Peptides
Next-Generation Search for Solar Axion Dark Matter with the International Axion Observatory
Measuring Atmospheric Gas Using Small Satellites
Real-Time Decision Making in Swarm Situations Using Belief Networks
A Search for Intermediate-Mass Black Hole Dark Matter
Large-Scale Multimodal Deep Learning for Nuclear Nonproliferation Analysis
Earth and Atmospheric Science
In Situ Probes of Granular Media Under Compression
Uncovering the Origins of the Solar System with Cosmochemical Forensics
Fiber-Optic Acoustic Sensors for Geophysical Applications
Probabilistic Predictions and Uncertainty Estimation for Radiological and Nuclear Effects Modeling
Antropogenic radionuclide transient tracers: Model diagnostics and timescales of the redistribution of heat and carbon by the ocean.
Unraveling Force Chains and Failure in Granular Materials
Improving Subsurface Fluid Characterization by Coupling Seismic and Electromagnetic Phenomena
Energy and Climate Security
Dynamic Stimulation of Geologic Resources
Decomposition Methods for Power Grid Optimization
Increasing Capacity of Flow-Through Electrode Capacitive Desalination with Phased Charging
Accelerated Discovery of Advanced Combustion Fuels
High-Fidelity Fracture Model for Hydraulically Fractured Shale Reservoirs
A Quantitative Methodology for Measuring Cyber Risk to Critical Infrastructure
A Flue-Temperature Carbon Dioxide Separation Membrane
Fullerene-Grafted Graphene as an Electrical Energy Storage Material
Integrating Climate Simulations and Paleontology Data to Constrain California Drought Risks
Planar Ceramic Light Guides for Solar Concentrators and Laser Amplifiers
Detection and Attribution of Climate-Driven Impacts on Crop Yields
A Quantitative Methodology for Measuring Cyber Risk to Critical Infrastructure
Large-Scale Energy Storage in the Earth
Optical Fibers for Water Treatment
Printed Biocatalysts for Natural Gas Upgrading
Hierarchical Nanometer-Scale Porous Copper Flow-Through Electrodes for Efficient Carbon Dioxide Reduction
Applying Inverse Sheath Theory to Plasma–Surface Interactions in Magnetic Fusion and Space Plasmas
High-Energy-Density Science
Melting and Solidification in Multicomponent Materials: Constraints on the Search for Habitable Planets
Quantum Simulations for Strongly Correlated Materials with High Atomic Numbers
X-Ray Free-Electron Laser Science for High-Energy-Density Experiments
Creation and Study of Ultrahigh-Energy-Density Matter Using Nanometer-Scale Structured Targets
Advanced Fusion Target-Capsule Concepts
Coupling Monte Carlo Neutral and Fluid Plasma Models for Edge Simulation in Magnetic Fusion
Collisionless Shock Formation in Laser-Generated Plasma Streams
New Quantum Simulation Capability for Ultrahigh-Temperature, High-Energy-Density Science
Extending Laser-Driven X-Ray Sources to High-Energy-Density Science Facilities
Exploring Laser-Produced Relativistic Pair Plasma Jets
Kinetics of Incipient Stages of Phase Transitions
Understanding Plasma Divertor Detachment in Fusion Power Reactors
Effects of Pressure-Induced Ionization Potential Depression on Material Properties
Effects of Magnetic Fields on Transport in Laser-Driven Nonequilibrium Plasmas
The Design of a Solid-State Streak Detector
Investigation of Ultrahigh-Pressure Phase Transitions in Metals with a Toroidal Diamond Anvil Cell
A Short-Pulse, Laser-Driven Particle Beam Capability
An Optical Interferometry Diagnostic for Hohlraum Plasma Characterization Experiments on the National Ignition Facility
High-Pressure Thermal Conductivity of Iron
Study of Iron K-Alpha Spectra in a Compact X-Ray Atmosphere
Simulations of Interpenetrating Plasmas
Measuring the Asymptotic Behavior of Self-Generated 'B' Magnetic Fields in a Hohlraum Geometry
Metallic Helium at Extreme Density Inside Giant Planets and White Dwarf Stars
Probing the Interface Stability of Implosions
Numerical Simulations of Dust-Grain Collisions with Interstellar Spacecraft
A High-Fluence, High-Energy X-Ray Source Using Laser–Plasma Instabilities
Measuring Astrophysically Relevant Reaction Rates in a High-Energy-Density Laboratory
Foams in Hohlraums
Next-Generation Hohlraums for High Coupling Efficiency
Identification and Analysis of Temperature Gradients in X-Ray Spectroscopic Data
Thermal Conductivity Measurements in Convergent Geometry
High-Performance Computing, Simulation, and Data Science
Integrated Mesoscale Approach for Predicting Ionic Conductivity in Solid Electrolytes
New Computational Methods for Scalable Genome Variation Discovery
Acceleration of Ptychographic Microscopy Reconstruction
Algorithm for First-Principles Molecular Dynamics of Metals at Extreme Scales
Failure Recovery Abstractions for Large-Scale Parallel Applications
Predictive Models Based on Disjointed Feature Sets for Applications in Biomedicine and Cyber Security
Validating Large Fluid-Dynamics Simulations of Complex Geometries with Three-Dimensional Printing
In-Memory Associative Indexing
Modeling Spatial and Temporal Coupling in High-Contrast Grating Compressors Utilizing High-Performance Computing
Computational Framework for Data Assimilation and Uncertainty Management of Large-Dimensional Dynamics Models
Topology Optimization of Multifunctional Materials
Multimodal Learning on Big Brain Data
Improving Simulation Workflows: A Data Analytics Approach
High-Dimensional Spectral-Sampling Techniques
Detecting Data-Races in High-Performance Computing
Simulation of Biased Random Walks in an Asynchronous Graph Framework
Multiple-Rate Integrators for Differential Equations
Rapid Closed-Loop Control of Additive Manufacturing with Machine Learning
Advanced Adaptive Optics Algorithms for Astronomical and X-ray Applications
Exploring Laser Directed-Energy Lethality and Vulnerability
Robust Decentralized Signal Processing and Distributed Control of Autonomous Sensor Networks
Optimizing Application Performance in Multi-Constraint Computing Environments
Discovering Phase Behavior of Materials Interfaces with Evolutionary Algorithms
Variable Precision Computing
Computational Design Automation
Inertial Fusion Science and Technology
High-Temperature Plasma-Chemistry Kinetics Test Bed
Chemically Stable and Optically Transparent Vapor-Deposited Plastics
Liquid Condensation and Solidification Behavior of Hydrogen Isotopes in Foams
Microphysics Studies of Hohlraum Dynamics
Lasers and Optical Science and Technology
Single-Shot Optical Recorder with Picosecond Resolution and Nanosecond Record Length
Next-Generation Films for High-Performance Optoelectronics Applications
Compton-Scattering X-Ray Generation from Compact X-Band Accelerators
Mechanisms of Pulsed-Laser Ablation, Damage, and Failure in Various Classes of Materials
Efficient, High-Power Mid-Infrared Laser for National Security and Scientific Applications
Active Adaptive Control of High-Energy, High-Repetition-Rate, Short-Pulse Lasers
HDRScope-The High Dynamic-Range Oscilloscope
Laser Beam Propagation Through Deep Turbulence
Improved Coupling of Laser Energy to Targets
Extreme Nonlinear Optics of Plasmas
Fabrication of Functionally Graded Optical Components Using Additive Manufacturing
Enhanced Surface Laser-Damage Resistance of Nonlinear Crystals
Science of Finishing of Novel Optical Materials
Technologies for High-Energy, Short-Pulse Laser Systems Beyond the Kilowatt Barrier
Optically Safer, Power-Scalable Laser Systems for Defense Applications
Advanced Laser Diode Packaging
New Framework to Prevent Catastrophic Damage to Laser Diodes
A Compact High-Power, Radio-Frequency Directed-Energy Source
ARCHER: Advanced Radiographic Capability–High Energy and Resolution
Plasmonic Control of Short Pulses in Optical Fibers
Advanced Multilayer Systems for National Security
Nuclear, Chemical, and Isotopic Science and Technology
Answering Fundamental Physics Questions with the Neutrino
Neutrino Science with a Kiloton-Scale Water Detector
Tracking Water through the Critical Zone to Assess Drought Vulnerability
New Physics from Collisions at the Large Hadron Collider
Inferring Nuclear Fireball Properties from Experimental Data
Nucleosynthesis for Science and Security
Using Short-Lived Cosmogenic Isotopes to Determine the Age of Underground Tunnels
Radon Collection for Electric Dipole Measurements
Measurement of Uranium Decay Rates to Advance Nuclear Forensics Chronology
The New Frontier of Nuclear Science: Nuclear Reactions and Radiochemistry at the National Ignition Facility
The Origins of Matter on Near-Exascale Supercomputing
An Alternative Rare-Event Detector
Probabilistic Modeling for Nuclear Fission and Heavy-Ion Collisions
Feasibility of Low-Energy Nuclear Physics Research Using LLNL Capabilities and SARAF Beams
Achieving the Ultimate Sensitivity for Dark Matter Detectors
Modernizing the Fission Basis
Development of Integrated Systems for Discovering the Chemical Properties of the Heaviest Elements
Event-by-Event Determination of Antineutrino Direction
Stockpile Stewardship Science
Precision Gamma-Ray Signatures for Long-Lived Radioactive Nuclei
A Dense-Plasma Focus Device as a Compact Neutron Source
Application-Driven Research into Multiscale Modeling of Laser-Plasma Interactions
Single-Shock Platform for Activation Studies with a Prompt Source of Fast Neutrons
Transport and the Equation of State for Asymmetric Plasma Mixtures
Self-Consistent, Three-Dimensional Calculations of Electromagnetic Pulse Propagation
Controlling Detonative Phenomena with High-Explosives Material Architecture
Deformation Mechanisms in Body-Centered Cubic Metals at High Pressures and Strain Rates
Prebiotic Self-Assembly Reactions in Astrophysical Icy Materials
Characterizing Carbon Nucleation in Shocked Energetic Materials
Multispectral X-Ray Computed Tomography
Modeling Thermal and Quantum Magnetic Fluctuations in Correlated Materials
FY2016
FY2015
FY2014
FY2013
FY2012
FY2011
FY2010
FY2009
FY2008
FY2007
FY2006
Staff
Overview
LDRD Annual Report FY2018
home
/
archives
/
ldrd annual 2018
/
overview
Director's Statement
How to Read This Report
The LDRD Program at LLNL
•
Oversight
•
Alignment with DOE, NNSA, and Laboratory Missions
•
Topics of Inquiry
•
Types of Projects
•
Structure of the FY18 Portfolio
•
Metrics
Research Highlights
Awards and Recognition
LDRD on Journal Covers (and TV)
The Long-Term Impacts of LDRD Investments: Centers for Strategic Partnerships